S_{F}
 INSTRUCTOR: DON SWIETER

 CHM 1025

 CHM 1025
 SECOND PROBLEM SET
 OFFICE: K-223
 SANTAFE COLLEGE
 Chemistry
 PHONE: 395-5303

QUESTIONS ON STOICHIOMETRY AND WRITING SIMPLE EQUATIONS

(Read handout on Balancing Chemical Equations before doing problems below)

1. Produce the balanced chemical equation for each.
a. Sodium metal and chlorine gas react to form solid sodium chloride.
b. Carbon and oxygen gas react to yield carbon monoxide gas.
c. Carbon and oxygen gas react to yield carbon dioxide gas.
d. Potassium metal and liquid water react to form H_{2} gas and aqueous potassium and hydroxide ions.
e. Hydrogen and nitrogen gas react to form ammonia.
f. The liquids, dichlorine heptoxide, $\mathrm{Cl}_{2} \mathrm{O}_{7}$, and $\mathrm{H}_{2} \mathrm{O}$ combine to give aqueous $\mathrm{H}_{3} \mathrm{O}^{+}$and ClO_{4}^{-}ions.
g. Hydrogen gas reacts with $\mathrm{Fe}_{3} \mathrm{O}_{4}$ yielding iron metal and liquid water.
h. Iron (II) persulfide (FeS_{2}) and oxygen gas yield iron (III) oxide and sulfur dioxide gas.
2. Write equations for the following transformations:
a. Iron reacts with air to form $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (a form of rust).
b. Sulfur is burned in air to form gaseous sulfur dioxide.
c. A water solution of sodium chloride is evaporated to dryness.
d. Liquid ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ reacts with O_{2} gas to produce carbon dioxide gas and liquid water.
e. Water is electrolyzed to form its constituent elements.
f. A lit match is placed in a mixture of elemental hydrogen and oxygen (to form what?).
3. Balance the following chemical reactions by inspection.
a. $\mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})$
b. $\mathrm{Bi}^{+3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
c. $\mathrm{Al}(\mathrm{s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Al}^{+3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
d. $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
e. $\mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})$
f. $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{Cu}^{+2}(\mathrm{aq}) \longrightarrow \mathrm{CuCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
g. $\mathrm{P}_{4} \mathrm{O}_{10}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$
4. A) Write statements using the terms, atoms, ions, molecules, and/or formula units, as appropriate, to describe the information given to a chemist by equations (a), (b), and (c) above.
B) Write statements using moles to describe the information given to a chemist by equations (a), (b), and (c) above.
5. Consider the following balanced equation: $4 \mathrm{P}_{4}+5 \mathrm{~S}_{8} \longrightarrow 4 \mathrm{P}_{4} \mathrm{~S}_{10}$
a. How many moles of $\mathrm{P}_{4} \mathrm{~S}_{10}$ are produced when 0.50 mole of S_{8} reacts according to the above equation?
b. How many moles of P_{4} are required to react with 16.0 g sulfur?
6. Consider the following balanced equation: $3 \mathrm{NaN}_{3} \longrightarrow \mathrm{Na}_{3} \mathrm{~N}+4 \mathrm{~N}_{2}$
a. How many moles of N_{2} are produced by the decomposition of 0.219 mol of NaN_{3} according to the above equation?
b. How many moles of NaN_{3} are required to produce $25.0 \mathrm{~g} \mathrm{~N}_{2}$?
7. Consider this reaction: $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. Calculate the mass of hydrogen formed when 25.0 g of the active metal aluminum reacts with excess HCl .
b. What mass of Al must be allowed to react with excess HCl to produce 1.00×10^{24} molecules of H_{2} gas?
8. Given that iron metal reacts with bromine to produce iron (III) bromide,
a. Write the balanced equation.
b. What mass of Br_{2} would be required to react completely with 210 g Fe ?
c. What mass of FeBr_{3} could be recovered from the reaction of 210 g Fe and excess Br_{2} ?
d. Calculate the percent yield of FeBr_{3} if 974 g of FeBr_{3} are produced in part c .
9. Into a sealed reaction flask were placed 1.00 g magnesium metal with 1.00 g of nitrogen gas. Heating drove the reaction to completion to yield only one product, magnesium nitride, $\mathrm{Mg}_{3} \mathrm{~N}_{2}$.
$3 \mathrm{Mg}+\mathrm{N}_{2} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
a. Identify the reactant present in excess.
b. What is the theoretical yield of magnesium nitride?
c. How many grams of the excess reagent remained after the reaction is completed?
10. Consider the following balanced equation:
$6 \mathrm{ClO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{HClO}_{3}+\mathrm{HCl}$
a. How many moles of HClO_{3} are produced from 14.3 g of ClO_{2} ?
b. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are needed to produce 5.74 g of HCl ?
c. How many grams of HClO_{3} are produced when 4.25 g of ClO_{2} are added to $0.853 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
11. Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, and hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, have been used as rocket propellents. They react according to the equation: $7 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{HNO}_{3}+8 \mathrm{H}_{2} \mathrm{O}$
a. How many moles of HNO_{3} are formed from $0.0250 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}$.
b. How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ react with $22.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}$.
c. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are formed if $1.87 \mathrm{~mol}_{\mathrm{HNO}}^{3}$ are produced?
d. How many grams of $\mathrm{H}_{2} \mathrm{O}_{2}$ are needed to produce $45.8 \mathrm{~g} \mathrm{HNO}_{3}$?
12. Compare the quantities of heat liberated per mole of iron formed when the oxides $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are reduced by aluminum.

$$
\begin{array}{rll}
3 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+8 \mathrm{Al}(\mathrm{~s}) \longrightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+9 \mathrm{Fe}(\mathrm{~s}) & \Delta \mathrm{H}^{\circ}=-3.34009 \times 10^{3} \mathrm{~kJ} \\
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s} & \Delta \mathrm{H}^{\circ}=-8.5019 \times 10^{2} \mathrm{~kJ}
\end{array}
$$

13. Calculate the amount of heat released when 10.0 g ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns in oxygen to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ and the products are cooled to $25.0^{\circ} \mathrm{C}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-1.368 \times 10^{3} \mathrm{~kJ}
$$

14. How much heat energy is released when 6.00 lb (about one gallon) of gasoline with a combustion that corresponds to octane is completely burned and the products are cooled to $25.0^{\circ} \mathrm{C}$? Use the following equation and note that: $1 \mathrm{lb}=453.6 \mathrm{~g}$.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-1.09413 \times 10^{4} \mathrm{~kJ}
$$

15. How much heat would be required in order to produce 562.0 g of mercury metal, Hg , from solid mercury(II) oxide, HgO .

$$
2 \mathrm{HgO} \longrightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \quad \Delta \mathrm{H}^{\circ}=+1.8158 \times 10^{2} \mathrm{~kJ}
$$

QUESTIONS INVOLVING SOLUTIONS

16. In which physical state (solid, liquid, or gas) is it easiest to carry out chemical reactions? Explain.
17. What is the definition of the word "solution?"
18. What are the components of a solution? How are they distinguished?
19. Why are most chemical reactions carried out in liquid solution?
20. Generally, what is the most "convenient" concentration unit for chemists to use? Why?
21. What is the definition of "Molarity?"
22. What is the molarity of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, if 53.5 g of sugar are dissolved to give 746 mL of solution?
23. What is the molarity of KCl if 1.45 g of KCl are dissolved to give 50.0 mL of solution?
24. How many grams of NaNO_{3} are there in 75.0 mL of $1.00 \mathrm{M} \mathrm{NaNO}_{3}$ solution?

QUESTIONS INVOLVING ATOMIC MODELS

25. Indicate whether energy is emitted or absorbed when the following electron transitions occur in hydrogen according to the Bohr model:
a. $\mathrm{n}=2$ to $\mathrm{n}=1$
b. $\mathrm{n}=2$ to $\mathrm{n}=4$
c. ionization of an e^{-}in the $\mathrm{n}=2$ state.
26. a) using the Bohr equation, calculate the energy of the photon emitted for each of the following electronic transitions;
i) $\mathrm{n}=4$ to $\mathrm{n}=3$
ii) $\mathrm{n}=3$ to $\mathrm{n}=2$
iii) $\mathrm{n}=2$ to $\mathrm{n}=1$

Take note of the magnitude of the energy differences between adjacent levels as n increases.
b) Calculate the wavelength of each of the photons above and classify each with respect to the region of the spectrum.

QUESTIONS ON ELECTRON CONFIGURATIONS

27. Each electron in an atom may be characterized by a set of four quantum numbers. For each of the following parts, tell how many different sets of quantum numbers are possible such that each set contains all of the values listed:
a) $\mathrm{n}=4, \ell=0$
b) $\mathrm{n}=4, \ell=1$
c) $\mathrm{n}=4, \ell=2$
d) $\mathrm{n}=4, \ell=3$
e) $\mathrm{n}=4, \ell=3, \mathrm{~m}_{\ell}=0$
28. Which of the following sets of quantum numbers is not allowable? Why not?
a) $\mathrm{n}=2, \ell=1, \mathrm{~m}_{\ell}=0$
b) $\mathrm{n}=2, \ell=-1$
c) $\mathrm{n}=3, \ell=0, \mathrm{~m}_{\ell}=0$
d) $\mathrm{n}=3, \ell=1, \mathrm{~m}_{\ell}=-1$
e) $\mathrm{n}=2, \ell=0, \mathrm{~m}_{\ell}=-1$
f) $\mathrm{n}=3, \ell=3, \mathrm{~m}_{\ell}=2$
29. What type of electron orbital (i.e., s, p, d, or f) is designated by:
a) $\mathrm{n}=2, \ell=1, \mathrm{~m}_{\ell}=-1$
b) $\mathrm{n}=4, \ell=0, \mathrm{~m}_{\ell}=0$
c) $\mathrm{n}=5, \ell=2, \mathrm{~m}_{\ell}=0$
30. What are the n and ℓ quantum number designations for the subshells $3 \mathrm{~s}, 4 \mathrm{p}$, and 5 d ?
31. What is the Pauli Exclusion Principle?
32. Write down the aufbau order as developed in class for the first seven levels.
33. What is Hund's Rule of maximum multiplicity?
34. How many orbitals constitute each of the sublevels, s, p, d, and f, respectively? Use \uparrow or \downarrow designations to distinguish between $+1 / 2$ and $-1 / 2$ spins on electrons, respectively, and write the correct box diagram electron configurations for:
a) 2, 4 and 5 electrons in a p sublevel;
b) 2, 5 and 7 electrons in a d sublevel;
c) 6,7 , and 8 electrons in an f sublevel.

Comment on the relative degree of magnetic character of each of the configurations.
35. Write the notations for the ground state electronic configuration of the following atoms, and state whether each atom is paramagnetic or diamagnetic. Diagram the valence electron configurations.
a) C
b) Cl
c) K
d) Al
e) Sr
f) Sn
g) V
h) Zn

QUESTIONS ABOUT IONIC SUBSTANCES

36. a) Why is the radius of a positive ion smaller than the radius of its parent atom?
b) Why do negative ions have larger radii than their parent atoms?
37. How would you expect the sizes of the hydrogen ion $\left(\mathrm{H}^{+}\right)$and the hydride ion $\left(\mathrm{H}^{-}\right)$to compare with that of the He atom? Explain.
38. Certain elements react to form salts by forming their characteristic ions. Based on their positions in the periodic table, predict the charges for the ions expected for the following elements.
a) Mg
b) K
c) Al
d) P
e) I
f) Te
39. Based on their positions in the periodic table and the expected charges for their respective characteristic ions predict the formulas for the salts formed by the following pairs of elements.
a) Ca and S_{8}
b) Li and P_{4}
c) Ga and F_{2}
d) Mg and N_{2}
e) Al and O_{2}
f) Na and H_{2}

QUESTIONS ABOUT COULOMB'S LAW

40. For each of the following set of ion pairs, decide which pair of ions has the higher or larger force of attraction and why?
a)

or

b)

or +22
c) +1
or

d)
(+1) -2
or
+2 -1
41. How would you expect the force of attraction between positive ion A and negative ion B to be affected by the following changes?
a) the charge on A is doubled
b) the charge on B is doubled
c) the charges on both A and B are doubled
d) the radii of both A and B are simultaneously doubled
42. For each of the following pairs of salts, decide which salt contains the greater cation-anion force of attraction. Explain your reasoning.
a) NaF or NaCl
b) NaF or MgO
c) KCl or RbBr

QUESTIONS ABOUT BONDING

43. Arrange the following individual bonds in order of increasing polarity based on their positions in the periodic table :
a) $\mathrm{H}-\mathrm{F}, \mathrm{H}-\mathrm{C}, \mathrm{H}-\mathrm{H}$
b) P-S, Si-Cl, Al-Cl
c) $\mathrm{Cl}-\mathrm{I}, \mathrm{P}-\mathrm{P}, \mathrm{C}-\mathrm{N}, \mathrm{O}-\mathrm{H}$
44. Based on actual electronegativity differences, classify the bonds in the following as ionic, polar covalent, or nonpolar covalent. Are there any surprises based on "general trends"?
a) I_{2}
b) LiCl
c) MgTe
d) $\mathrm{Cl}_{2} \mathrm{O}$
e) $\mathrm{H}_{2} \mathrm{~S}$
f) $\mathrm{Cs}_{2} \mathrm{O}$
g) BCl_{3}
h) SO_{2}
i) $\mathrm{Al}_{2} \mathrm{O}_{3}$

Basic Laws of Radiation
$\mathrm{E}=\mathrm{h} \bullet \mathrm{v}$
$\mathrm{c}=\lambda \bullet \nu$
$\bar{v}=1 / \lambda$

Periodic Table of the Elements

$\begin{gathered} 1 \\ \mathbf{H} \\ \hline 1.0079 \end{gathered}$	IIA											IIIA	IVA	VA	VIA	VIIA	$\begin{array}{\|c} 2 \\ \mathrm{He} \\ 4.002602 \end{array}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \text { Be } \\ 9.012182 \end{array}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ \hline 12.011 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.0067 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ \hline 15994 \end{gathered}$		10 Ne 20.180
\square	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.305 \\ \hline \end{gathered}$	IIIB	IVB	VB	VIB	VIIB	\ulcorner	VIIIB	7	IB	IIB	\qquad	$\begin{gathered} 14 \\ \text { Si } \\ 28.0855 \end{gathered}$	15 \mathbf{P} 30.973722	$\begin{gathered} 16 \\ \mathbf{S} \\ \hline 2.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.453 \end{gathered}$	18 Ar 39.948
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.0983 \end{gathered}$	20 Ca 40.08		$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.9415 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 51.996 \end{gathered}$		$\begin{aligned} & 26 \\ & \text { Fe } \\ & 55.845 \end{aligned}$		$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.693 \end{gathered}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & 63.546 \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & 65.38 \end{aligned}$	31 Ga 69.72	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.61 \end{gathered}$	33 As	$\begin{aligned} & 34 \\ & \text { Se } \\ & 78.96 \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \\ & 79.904 \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \\ & 83.798 \end{aligned}$
$\begin{gathered} 37 \\ \mathbf{R b} \end{gathered}$ 85.4678	$\begin{aligned} & 38 \\ & \mathrm{Sr} \\ & 87.62 \end{aligned}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.90585 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \\ \hline \end{gathered}$	41 Nb 92.90638	$\begin{gathered} 42 \\ \text { Mo } \\ \hline 95.96 \\ \hline \end{gathered}$	$\begin{aligned} & 43 \\ & \text { Tc } \\ & \hline(98) \end{aligned}$	$\begin{gathered} 44 \\ \text { Ru } \\ 101.07 \\ \hline \end{gathered}$		$\begin{gathered} 46 \\ \mathbf{P d} \end{gathered}$		$\begin{gathered} 48 \\ \text { Cd } \\ \hline 112.41 \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \text { ln } \\ 114.818 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \end{gathered}$ 118.71	51 Sb 121.760	52 Te 127.60	\qquad	$\begin{array}{r} 54 \\ \mathbf{X e} \\ \hline 131.29 \\ \hline \end{array}$
55 $\mathbf{C s}$ 132.904452	$\begin{gathered} 56 \\ \text { Ba } \\ 137.33 \end{gathered}$	$\begin{gathered} 57 \\ \text { La* } \\ \text { L38.9055 } \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{1 7 8 . 4 9} \end{gathered}$		$\begin{gathered} 74 \\ \mathbf{W} \\ \hline 183.84 \end{gathered}$	75 Re 186.207	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { Ir } \\ \text { I92.217 } \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ \text { 195.08 } \end{gathered}$		$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.3833 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	83 $\mathbf{B i}$ 208.98040	84 Po (209)	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ (210)	$\begin{aligned} & \hline 86 \\ & \mathbf{R n} \\ & (222) \end{aligned}$
$\begin{aligned} & 87 \\ & \text { Fr } \\ & (223) \end{aligned}$	88 Ra (226)	$\begin{gathered} 89 \\ \mathbf{A c}^{\dagger} \\ (227) \end{gathered}$	$\begin{aligned} & 104 \\ & \mathbf{R f} \\ & \mathbf{R} \\ & \hline(265) \end{aligned}$	$\begin{aligned} & 105 \\ & \text { Db } \\ & \text { (268) } \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & \mathbf{S g} \\ & (272) \end{aligned}$	$\begin{aligned} & 107 \\ & \text { Bh } \\ & (273) \end{aligned}$	108 Hs (276)	$\begin{gathered} 109 \\ \text { Mt } \\ (279) \end{gathered}$	$\begin{aligned} & 110 \\ & \text { Ds } \\ & (281) \end{aligned}$	$\begin{aligned} & 111 \\ & \mathbf{R g} \\ & (273) \end{aligned}$	$\begin{aligned} & 112 \\ & \text { Cn } \end{aligned}$	113 (287)	114 (289)	115 (291)	116 (292)		118 (294)

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.116	140.90765	144.242	(145)	150.36	151.964	157.25	158.92535	162.500	164.93032	167.259	168.93421	173.05	174.9668
\dagger	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.03806	231.03588	238.02891	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(261	${ }^{2} 264$

