S _F	CHM 2045 FIRST PROBLEM	
INSTRUCTOR: DON SW	IETER OFFICE: K–22	3 PHONE: 395–5303
MATH REVIEW and SI	GNIFICANT FIGURE QUES	STIONS
1. Perform the indicated algel	ora: (For help see the appendice	es in your text.)
4	$^{(m+3)} \div a^{(2m+2)} =$ c. $a^0 =$ what does $a^{1/n} = ?$	d. $a^{-2} =$
2. How many significant figua. 9 baseballsd. 3 dozen ostrich eggsg. 1.01 in.	res are in each of the following b. 90 baseballs e. 0.1 cm h. 0.005 g	? c. 9,000,000 baseballs f. 100.10 cm i. 0.00500 g
3. Rewrite the values in probl	em 2 e-i in suitable scientific n	otation.
4. Do the indicated arithmetic	paying strict attention to signi	ficant figures and units.
a. 0.034 cm + 0.0340 cm d. 0.034 cm ÷ 0.034 cm	 b. 0.034 cm × 0.0340 cm e. 0.034 cm - 0.0034 cm 	c. $0.034 \text{ cm} - 0.0340 \text{ cm}$
5. Perform the following calcu (without the aid of a calcul		the proper number of significant figures
a. 9.75 in + 0.326 in	b. 1.025 sec – 0.09 sec	c. $(1.61 \times 10^{15} \text{ A}) + (1.61 \times 10^{16} \text{ A})$
d. $(5.6 \times 10^{-2} \text{ m})^2$	e. $\sqrt[3]{4 \times 10^5}$ g \times 3 \times 1	0^{-3} g
b. Perform the following SI ca. 971 mg = kg	onversions making proper use o b. 82 s = ms	of unit conversion analysis: c. $12.3 \text{ cm}^2 = \text{mm}^2$
d. $0.213 \text{ L} = \text{cm}^3$	e. $6.50 \text{ m}^{-1} = \text{cm}^{-1}$	f. $7.61 \text{ kg/L} = \text{mg/mL}$
e i	e	ss of exactly 3 g. These gems are valued llowing using unit – factor analysis.
a How much money are w	ou out if you loss 50 stops?	

- a. How much money are you out if you lose 50 stones?
- b. If you now receive an additional handful of these gems, how would you determine the value of this handful by weighing? Tell exactly how you would go about it.
- c. Could you determine the value of this handful by a counting procedure? What assumption would the counting procedure depend upon?
- 8. A circular cheese pizza with a 10" diameter sells for \$5.00. The same pizza with a 14" diameter sells for \$10.00. Which is the better buy? (Remember: area of a circle = πr^2)
- 9. Medium thin-rind grapefruit (diam. = 2.0") sell for 10¢ each. Large thin-rind grapefruit (diam. = 3.0") sell for 20¢ each. Consider the fruit to be spherical. Which is the better buy? (Remember: volume of a sphere = $4/3\pi r^3$)

QUESTIONS ON MATTER and ENERGY

- 10. What are the general properties of metals and where are they found in the periodic table?
- 11. What are the general properties of nonmetals and where are they found in the periodic table?
- 12. Characterize each of the following as a physical or chemical process:
 - a. copper wire produced from a bar of copper
 - b. the attraction of an iron nail by a magnet
 - c. dissolving sugar in water
 - d. vaporization of water from a lake
 - e. combustion of coal
 - f. heating the filament of an incandescent lamp to provide light
 - g. crystallization of sodium carbonate from water
 - h. dissolving an Alka-Seltzer in water
 - i. silver tarnishing in air
- 13. Suppose I define a new temperature scale (Hokie, $^{\circ}$ H) where the freezing point of H₂O is -40°H and the boiling point of H₂O is 320°H.

To what temperature in °C does 100°H correspond? From a significant figure standpoint, which scale the °H or the °C more precisely defines the temperature? Why?

- 14. Classify the following processes as endothermic or exothermic:
 - a. melting of ice b. evaporation of alcohol c. combustion of methane
 - d. frying an egg e. carbohydrates metabolized by the body
- 15. When washing soda (Na₂CO₃) is stirred into H₂O initially at 25°C the temperature of the resulting solution is greater than 25°C. Is the dissolution process exothermic or endothermic? Explain.

QUESTIONS ON DENSITY

- 16. A cube with edge = 1.00" of an unknown pure substance has a mass of 10.0 oz. What is the density of this substance in g/mL? In kg/L? (Remember: 1 mL = 1 cc exactly and 1.00 oz = 28.35 g)
- 17. Osmium is the densest element known. What is the density of osmium if 2.72 g of osmium has a volume of 0.121 mL?
- 18. What is the mass of 125 mL of chlorine gas if the density of chlorine gas is 3.16 g/L?
- 19. What is the volume of 11.3 g of graphite (carbon) which has a density of 2.25 g/cm³?

- 20. Determine the density of a block of metal weighing 20.12 g which when immersed in water contained in a graduated cylinder causes the water level to rise from 15.5 mL to 21.6 mL.
- 21. A graduated cylinder has a mass of 57.832 g. An organic liquid, toluene, with a density of 0.866 g/cm³ is added until the combined mass reads 87.127 g. What is the volume of the liquid in the graduated cylinder?

QUESTIONS ON FUNDAMENTAL LAWS OF CHEMISTRY

22. If 16.0 g of oxygen react completely with 2.0 g of hydrogen to produce water, what mass of water is produced? What natural law are you using to determine the mass of the water?

If 4.0 g of oxygen are reacted with 2.0 g of hydrogen to produce water and leftover hydrogen, what mass of hydrogen is leftover? What is the mass of water produced? On what natural laws are your responses based?

- 23. Consider these hypothetical examples of the work of John Dalton on the mythical elements Gazook (G) and Mudd (M) under differing experimental conditions:
 - a. 1.00 g G + 3.00 g M \longrightarrow 4.00 g of a new pure stuff, Compound I
 - b. 1.00 g G + 6.00 g M \longrightarrow 7.00 g of another pure stuff, Compound II
 - c. 1.00 g G + 9.00 g M \longrightarrow 10.00 g of yet another pure stuff, Compound III
 - i) What natural law can be used to derive simplest formulas for the products from these data?
 - ii) Now, for a, b, and c respectively, what are the SIMPLEST formulas for the products that are consistent with the data?
 - iii) If GM₂ is an acceptable formula for compound I, what are acceptable formulas for the other products?
 - iv) If G₂M₅ is an acceptable formula for compound I, what are acceptable formulas for the other products?
 - v) If GM is an acceptable formula for compound II, what are acceptable formulas for the other products?

QUESTIONS ON FUNDAMENTAL SUBATOMIC PARTICLE

24. J. J. Thomson showed that cathode ray tubes could be constructed using many different metals as the cathodic electrode material.

How do the results of the Thomson experiments support the theory that cathode rays (or electrons as they are known today) are fundamental particles of all matter?

What did his experiments show about canal rays?

- 25. Why could neutrons not be isolated and detected by the same methods that had been used to characterize electrons and protons?
- 26. A student repeats Millikan's oil drop experiment in order to determine the charge on the electron. The results were:

Droplet	Calculated charge
А	$-9.6132 \times 10^{-19} \text{ C}$
В	$-14.4198 \times 10^{-19} \text{ C}$
С	$-4.8066 \times 10^{-19} \text{ C}$
D	$-19.2264 \times 10^{-19} \mathrm{C}$

- a. From these four pieces of data, what is the LARGEST acceptable value for the charge on the electron? Explain.
- b. Now reconsider the data. Could the value of -2.4033×10^{-19} C also be an acceptable value? Explain.
- 27. The charge/mass (e/m) ratio for an electron is -1.76×10^8 C/g and this ratio for a proton is $+9.58 \times 10^4$ C/g. Use these data to show why chemists may consider an electron to be essentially massless. (Hint. Calculate the ratio of the mass of an electron to the mass of a hydrogen atom.)
- 28. It is now known that static electric charges are caused by the transfer of electrons.
 - a. How many excess electrons are present on an object with a charge of -5.5×10^{-15} C?
 - b. How many electrons are deficient from an object with a net charge of $+6.4 \times 10^{-12}$ C?
- 29. What is the net charge, in coulombs, associated with 1.00 × 10¹²:
 a. hydrogen atoms (¹₁H)?
 b. fluoride ions (F⁻)?
 c. ²²₁₀Ne⁺² ions?
- 30. Why is it important to use a very thin foil for the Rutherford experiment?
- 31. Calculate the density of matter in a proton using Rutherford's estimate of the diameter of a proton of 1.5×10^{-13} cm. The mass of a free proton is about 1.67×10^{-24} g. Assume the nucleus is a sphere $(V = 4/3\pi r^3)$. Compare this density with the density of osmium metal (the densest element) which is 22 g/cm³). Comment about the amount of "empty space" in an atom.

32. Consider that the gold foil used in the Rutherford experiment was $4 \ge 10^{-4}$ cm thick. If Au has an atomic radius of 1.4 Å, on the average through how many Au atoms did each alpha particle (α) pass? (Refer to diagram at right.)

Elemental	Number of	Number of	Number of	Charge on	
Symbol	Symbol Protons		Electrons	Species	Name
$^{190}_{78}{\rm Pt}$					
${}^{41}_{20}Ca^{+2}$					
$^{223}_{87}$ Fr					
$^{139}_{53}\mathrm{I}^{-1}$					
³ ₂ He					
			6		Carbon Thirteen
	14	15		0	
		18	18	-2	
	26	30	23		
		118	76	+3	

22	Complete	tha	fallowing	tabla
<i>33</i> .	Complete	une	Ionowing	table:

- 34. Although the symbol ³⁵₁₇Cl may be preferred to the simpler ³⁵Cl, can you explain why the two actually convey the same information? Do the symbols ³⁵₁₇Cl and ₁₇Cl have the same meaning?
- 35. Are the two atoms described by 60 X and 60 Y atoms of the same element?
- 36. The mass numbers of the isotopes of hydrogen, called protium, deuterium, and tritium, are 1, 2, and 3, respectively. What are the basic differences in these types of hydrogen atoms?
- 37. Explain why ¹⁸O and ¹⁶O have essentially identical chemical properties.
- 38. The mass of a ${}_{6}^{12}$ C atom is taken to be exactly 12 amu. Are there likely to be any other nuclides with an exact integral (whole number) mass, expressed in amu? Explain.

- 39. Determine the average atomic mass of the following elements given the natural isotopic distributions and absolute isotopic masses:
 - a. Potassium, only two natural isotopes: ³⁹K; 38,9637 amu, 93.12% and ⁴¹K; 40.974 amu, 6.880%
 - b. Neon, three natural isotopes:
 ²⁰Ne, 19.99244 amu, 90.92%, ²¹Ne, 20.99395 amu, 0.2570% and ²²Ne, 21.99138 amu, 8.820%
 - c. Do any potassium or neon atoms exist with your calculated masses?
- 40. The element silver consists in nature of two isotopes, ¹⁰⁷Ag, with isotopic mass of 106.905 amu, and ¹⁰⁹Ag, with isotopic mass of 108.905 amu. The accepted atomic mass of Ag is 107.870 amu. From this calculate the relative amounts of ¹⁰⁷Ag and ¹⁰⁹Ag in nature.

QUESTIONS ON BONDING, IONS AND MOLECULES

- 41. What is the difference between an atom and a molecule?
- 42. What is the difference between an atom, a simple cation, and a simple anion?
- 43. What is the difference between a molecule and a polyatomic ion?
- 44. What is the difference between a covalent bond and an ionic bond?
- 45. Which of the following bonds are likely to be ionic and which covalent?
 - a) Na to Cl bond b) C to H bond c) B to Cl bond d) O to Fe bond
- 46. Correct the following mis-statements.
 - a) The formula for carbon dioxide is CO2.
 - b) The molecule of H₂O contains one atom of hydrogen and two atoms of oxygen.
 - c) The molecules of sodium chloride (table salt) have the formula of NaCl.
 - d) Mg^{+2} is an anion.
 - e) NH₃ (ammonia) is a polyatomic ion.

QUESTIONS ON MOLES, FORMULAS AND PERCENT COMPOSITION

- 47. Determine the molar mass in grams (the mass of one mole) for each of the following species. Carry each calculation to the maximum number of significant figures allowed by the data. a. Fe b. N_2O_4 c. $(NH_4)_3AsO_4$ d. CO_3^{-2}
- 48. Calculate the formula mass (the mass of one formula unit) in amu <u>and</u> in grams for those materials in question 47. (1 amu = 1.66054×10^{-24} g) Make sure that you know the difference between questions 47 and 48!

- 49. Carry out each of the conversions indicated via the unit factor analysis approach.
 - a. 37.5 g H₂O to moles H₂O b. 3.25×10^{-2} moles F⁻¹ to g F⁻¹
 - c. 4.2 g I₂ to molecules I₂ d. 39.6 g (NH₄)₂SO₄ to formula units (NH₄)₂SO₄
 - e. 4.5×10^{25} molecules $C_6H_{12}O_6$ to grams $C_6H_{12}O_6$
 - f. 0.25 moles $CaCl_2$ to number of formula units $CaCl_2$
 - g. 6.26×10^{-3} moles Mg⁺² to ions of Mg⁺² h. 4.5×10^{25} molecules S₈ to moles S₈
- 50. Calculate the percentage by mass composition of each element in each of the following compounds.
 - a. $K_2Cr_2O_7$ b. $C_{12}H_{22}O_{11}$
- 51. a. Calculate the mass percent of water in $ZnSO_4 \cdot 7H_2O$
 - b. Calculate the mass of nitrogen in 30.0 g of the amino acid, glycine, NH₂CH₂CO₂H
- 52. a. A compound composed of xenon and fluorine, was found to be 63.3% Xe and 36.7% F by mass. Calculate the empirical formula.
 - b. A new organic compound gave the following elemental analysis:
 60.59% C and 7.12% H. Further analysis revealed oxygen to be the only other element present. Compute the empirical formula for this compound.
 - c. Titanium forms two compounds with oxygen. Given the elemental analysis for each compound, calculate the empirical formulas.

Cpd. I: 59.9% Ti, 40.1% 0 Cpd. II: 66.6% Ti, 33.4% 0

53. Given the following empirical formulas and molecular masses, calculate the molecular formulas:

Empirical Formula	Molecular mass, amu(±3%)
CH_2	71
CH ₂ O	88
AlCl ₃	267

54. Determine the empirical formula, molecular formula, and correct molecular mass for each compound listed below:

a. C, 85.69%; H, 14.31%; MM \approx 56 amu (± 2% error)

- b. C, 38.7%; H, 9.7%; O, 51.6%; MM $\approx 60 \text{ amu} \pm 3 \text{ amu}$
- c. C, 59.0%; H, 7.1%; O, 26.2% ; N, 7.7%; MM $\approx 182 \text{ amu} \pm 4 \text{ amu}$
- d. C, 49.5%; H, 5.15%; N, 28.9%; O, 16.5%; MM \approx 195 amu \pm 2 amu
- e. C, 1.640 g; H, 0.1032 g; ;N, 0.4780 g; O, 1.365 g ; $MM \approx 420 \pm 20$ amu

QUESTIONS ON STOICHIOMETRY AND WRITING SIMPLE EQUATIONS

55. Balance the following chemical reactions by inspection.

a. Mg (s) + N₂ (g)
$$\longrightarrow$$
 Mg₃N₂ (s)
b. Bi⁺³ (aq) + H₂S (g) + H₂O (ℓ) \longrightarrow Bi₂S₃ (s) + H₃O⁺ (aq)
c. Al (s) + H₃O⁺ (aq) \longrightarrow Al⁺³ (aq) + H₂ (g) + H₂O (ℓ)
d. C₈H₁₈ (ℓ) + O₂ (g) \longrightarrow CO₂ (g) + H₂O (ℓ)
e. CO₃⁻² (aq) + NO (g) + O₂ (g) \longrightarrow NO₂⁻ (aq) + CO₂ (g)
f. HCO₃⁻ (aq) + Cu⁺² (aq) \longrightarrow CuCO₃ (s) + CO₂ (g) + H₂O (ℓ)
g. P₄O₁₀ + H₂O \longrightarrow H₃PO₄

- h. See handout on balancing for more and harder problems.
- 56. Write statements using the terms, <u>atoms</u>, <u>ions</u>, <u>molecules</u>, and/or <u>formula units</u>, as appropriate, to describe the information given to a chemist by equations (a), (b), and (c) in problem 55 above.
- 57. Produce the balanced chemical equation for each.
 - a. Sodium metal and chlorine gas react to form solid sodium chloride.
 - b. Carbon and oxygen gas react to yield carbon monoxide gas.
 - c. Carbon and oxygen gas react to yield carbon dioxide gas.
 - d. Potassium metal and liquid water react to form H_2 gas and aqueous potassium and hydroxide ions.
 - e. Hydrogen and nitrogen gas react to form ammonia.
 - f. The liquids, dichlorine heptoxide, Cl_2O_7 , and H_2O combine to give aqueous H_3O^+ and ClO_4^- ions.
 - g. Hydrogen gas reacts with Fe_3O_4 yielding iron metal and liquid water.
 - h. Iron (II) persulfide (FeS₂) and oxygen gas yield iron (III) oxide and sulfur dioxide gas.
- 58. Write equations for the following transformations:
 - a. Iron reacts with air to form Fe_2O_3 (a form of rust).
 - b. Sulfur is burned in air to form gaseous sulfur dioxide.
 - c. A water solution of sodium chloride is evaporated to dryness.
 - d. Liquid ethyl alcohol (C_2H_5OH) reacts with O_2 gas to produce carbon dioxide gas and liquid water.
 - e. Water is electrolyzed to form its constituent elements.
 - f. A mixture of elemental hydrogen and oxygen is sparked to ignition.

- 59. Consider the following balanced equation: $4 P_4 + 5 S_8 \longrightarrow 4 P_4 S_{10}$
 - a. How many moles of P_4S_{10} are produced when 0.50 mole of S_8 react?
 - b. How many moles of P_4 are required to react with 16.0 g sulfur?
- 60. Consider the following balanced equation: $3 \text{ NaN}_3 \longrightarrow \text{Na}_3\text{N} + 4 \text{N}_2$
 - a. How many moles of N_2 are produced by the decomposition of 0.219 mol of NaN₃?
 - b. How many moles of NaN₃ are required to produce 25.0 g N_2 ?
- 61. Consider this reaction: 2 Al + 6 HCl \longrightarrow Al₂Cl₆ + 3 H₂
 - a. Calculate the mass of hydrogen formed when 25.0 g of the aluminum reacts with excess HCl.
 - b. What mass of Al would react with excess HCl to produce 1.00×10^{24} molecules of H₂ gas?
- 62. Given that iron metal reacts with bromine to produce iron (III) bromide,
 - a. Write the balanced equation.
 - b. What mass of Br_2 would be required to react completely with 210 g Fe?
 - c. What mass of FeBr₃ could be recovered from the reaction of 210 g Fe and excess Br₂?
 - d. Calculate the percent yield of FeBr₃ if 974 g of FeBr₃ are produced in part c.
- 63. Into a sealed reaction flask were placed 1.00 g magnesium metal with 1.00 g of nitrogen gas. Heating drove the reaction to completion to yield only one product, magnesium nitride, Mg_3N_2 .
 - $3 \text{ Mg} + \text{N}_2 \longrightarrow \text{Mg}_3\text{N}_2$
 - a. Identify the reactant present in excess.
 - b. What is the theoretical yield of magnesium nitride?
 - c. How many grams of the excess reagent remained after the reaction is completed?
- 64. Consider the following balanced equation:

 $6 \operatorname{ClO}_2 + 3 \operatorname{H}_2 O \longrightarrow 5 \operatorname{HClO}_3 + \operatorname{HCl}$

- a. How many moles of HClO₃ are produced from 14.3 g of ClO₂?
- b. How many grams of H_2O are needed to produce 5.74 g of HCl?
- c. How many grams of HClO₃ are produced when 4.25 g of ClO₂ are added to 0.853 g H_2O ?

- 65. Hydrazine, N₂H₄, and hydrogen peroxide, H₂O₂, have been used as rocket propellents. They react according to the equation: $7 H_2O_2 + N_2H_4 \longrightarrow 2 HNO_3 + 8 H_2O$
 - a. How many moles of HNO₃ are formed from $0.0250 \text{ mol } N_2H_4$?
 - b. How many moles of H_2O_2 react with 22.0 g N_2H_4 ?
 - c. How many grams of H_2O are formed if 1.87 mol HNO₃ are produced?
 - d. How many grams of H_2O_2 are needed to produce 45.8 g HNO₃?
- 66. Compare the quantities of heat liberated per mole of iron formed when the oxides Fe_3O_4 and Fe_2O_3 are reduced by aluminum.
 - $3 \operatorname{Fe}_{3}O_{4}(s) + 8 \operatorname{Al}(s) \longrightarrow 4 \operatorname{Al}_{2}O_{3}(s) + 9 \operatorname{Fe}(s) \qquad \Delta H^{\circ} = -3.348 \times 10^{3} \operatorname{kJ}$ $\operatorname{Fe}_{2}O_{3}(s) + 2 \operatorname{Al}(s) \longrightarrow \operatorname{Al}_{2}O_{3}(s) + 2 \operatorname{Fe}(s) \qquad \Delta H^{\circ} = -8.515 \times 10^{2} \operatorname{kJ}$
- 67. Calculate the amount of heat released when 10.0 g ethyl alcohol, C_2H_5OH burns in oxygen to CO_2 and H_2O and the products are cooled to 25.0°C.

$$C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O \qquad \Delta H^\circ = -1.367 \times 10^3 \text{ kJ}$$

68. How much heat energy is released when 6.00 lb (about one gallon) of gasoline with a composition that corresponds to octane is completely burned and the products are cooled to 25.0° C? Use the following equation and note that: 1 lb = 454 g.

 $2 C_8 H_{18} + 25 O_2 \longrightarrow 16 CO_2 + 18 H_2O$ $\Delta H^\circ = -1.10 \times 10^4 \text{ kJ}$

69. How much heat would be required in order to produce 562.0 g of mercury metal, Hg, from solid mercury(II) oxide, HgO.

$$2 \text{ HgO} \longrightarrow 2 \text{ Hg} + \text{ O}_2 \qquad \qquad \Delta \text{H}^\circ = +1.817 \times 10^2 \text{ kJ}$$

QUESTIONS INVOLVING SOLUTIONS

- 70. In which physical state (solid, liquid, or gas) is it easiest to carry out chemical reactions? Explain.
- 71. What is the definition of the word "solution?"
- 72. What are the components of a solution? How are they distinguished?
- 73. Why are most chemical reactions carried out in liquid solution?
- 74. Generally, what is the most "convenient" concentration unit for chemists to use? Why?
- 75. What is the definition of "Molarity?"
- 76. What is the molarity of sugar, $C_{12}H_{22}O_{11}$, if 53.5 g of sugar are dissolved to give 746 mL of solution?
- 77. What is the molarity of KCl if 1.45 g of KCl are dissolved to give 50.0 mL of solution?
- 78. How many grams of NaNO₃ are there in 75.0 mL of 1.00 M NaNO₃ solution?

IA																	VIIIA
1 H 1.0079	IIA											IIIA	IVA	VA	VIA	VIIA	2 He 4.002602
3	4											5	6	7	8	9	10
Li 6.941	Be 9.012182											B 10.81	C 12.011	N 14.0067	O 15.9994	F 18.998403	Ne 20.180
11	12											13	14	15	16	17	18
Na 22.98977	Mg 24.305	IIIB	IVB	VB	VIB	VIIB	Γ	VIIIB	—— <u>1</u>	IB	IIB	Al 26.98154	Si 28.0855	P 30.97376	S 32.07	CI 35.453	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.0983	Ca 40.08	Sc 44.95591	Ti 47.867	V 50.9415	Cr 51.996	Mn 54.93805	Fe 55.845	Co 58.93320	Ni 58.6934	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.92159	Se ^{78.96}	Br 79.904	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.4678	Sr 87.62	Y 88.90585	Zr 91.224	Nb 92.90638	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.90550	Pd 106.42	Ag 107.8682	Cd 112.41	In 114.818	Sn 118.71	Sb 121.760	Te 127.60	1 26.90447	Xe 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9054	Ba 137.33	La*	Hf 178.49	Ta 180.9479	W 183.84	Re 186.207	Os 190.23	Ir 192.217	Pt 195.08	Au 196.96654	Hg 200.59	TI 204.3833	Pb 207.2	Bi 208.98037	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac [†]	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(277)		(289)		(289)		(293)
								1				1		1		1	,
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
			*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.12	140.90765	144.24	(145)	150.36	151.96	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
†	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

1995–98