S_{F}
 CHM 2045
 FIRST PROBLEM SET

INSTRUCTOR: DON SWIETER

OFFICE: K-223
PHONE: 395-5303

MATH REVIEW and SIGNIFICANT FIGURE QUESTIONS

1. Perform the indicated algebra: (For help see the appendices in your text.)
a. $\mathrm{a}^{\mathrm{m}} \times \mathrm{a}^{\mathrm{n}}=$
b. $a^{(m+3)} \div a^{(2 m+2)}=$
c. $\mathrm{a}^{0}=$
d. $a^{-2}=$
e. Since $a^{1 / 4}=\sqrt[4]{a} \quad$, what does $a^{1 / n}=$?
2. How many significant figures are in each of the following?
a. 9 baseballs
b. 90 baseballs
c. $9,000,000$ baseballs
d. 3 dozen ostrich eggs
e. 0.1 cm
f. 100.10 cm
g. 1.01 in .
h. 0.005 g
i. 0.00500 g
3. Rewrite the values in problem 2 e-i in suitable scientific notation.
4. Do the indicated arithmetic paying strict attention to significant figures and units.
a. $0.034 \mathrm{~cm}+0.0340 \mathrm{~cm}$
b. $0.034 \mathrm{~cm} \times 0.0340 \mathrm{~cm}$
c. $0.034 \mathrm{~cm}-0.0340 \mathrm{~cm}$
d. $0.034 \mathrm{~cm} \div 0.034 \mathrm{~cm}$
e. $0.034 \mathrm{~cm}-0.0034 \mathrm{~cm}$
5. Perform the following calculations and report the answer to the proper number of significant figures (without the aid of a calculator):
a. 9.75 in +0.326 in
b. $1.025 \mathrm{sec}-0.09 \mathrm{sec}$
c. $\left(1.61 \times 10^{15} \mathrm{~A}\right)+\left(1.61 \times 10^{16} \mathrm{~A}\right)$
d. $\left(5.6 \times 10^{-2} \mathrm{~m}\right)^{2}$
e. $\sqrt[3]{4 \times 10^{5} \mathrm{~g} \times 3 \times 10^{-3} \mathrm{~g}}$
6. Perform the following SI conversions making proper use of unit conversion analysis:
a. $971 \mathrm{mg}=\mathrm{kg}$
b. $82 \mathrm{~s}=\mathrm{ms}$
c. $12.3 \mathrm{~cm}^{2}=\mathrm{mm}^{2}$
d. $0.213 \mathrm{~L}=\mathrm{cm}^{3}$
e. $6.50 \mathrm{~m}^{-1}=\mathrm{cm}^{-1}$
f. $7.61 \mathrm{~kg} / \mathrm{L}=\mathrm{mg} / \mathrm{mL}$
7. You are given 1000 equal sized gem stones with a total mass of exactly 3 g . These gems are valued at $\$ 1000$ per oz. (Note: $1.00 \mathrm{oz}=28.35 \mathrm{~g}$) Answer the following using unit - factor analysis.
a. How much money are you out if you lose 50 stones?
b. If you now receive an additional handful of these gems, how would you determine the value of this handful by weighing? Tell exactly how you would go about it.
c. Could you determine the value of this handful by a counting procedure? What assumption would the counting procedure depend upon?
8. A circular cheese pizza with a 10 " diameter sells for $\$ 5.00$. The same pizza with a 14 " diameter sells for $\$ 10.00$. Which is the better buy? $\left(\right.$ Remember: area of a circle $\left.=\pi r^{2}\right)$
9. Medium thin-rind grapefruit (diam. $=2.0^{\prime \prime}$) sell for 10ϕ each. Large thin-rind grapefruit (diam. $=3.0^{\prime \prime}$) sell for 20ϕ each. Consider the fruit to be spherical. Which is the better buy? (Remember: volume of a sphere $=4 / 3 \pi r^{3}$)

QUESTIONS ON MATTER and ENERGY

10. What are the general properties of metals and where are they found in the periodic table?
11. What are the general properties of nonmetals and where are they found in the periodic table?
12. Characterize each of the following as a physical or chemical process:
a. copper wire produced from a bar of copper
b. the attraction of an iron nail by a magnet
c. dissolving sugar in water
d. vaporization of water from a lake
e. combustion of coal
f. heating the filament of an incandescent lamp to provide light
g. crystallization of sodium carbonate from water
h. dissolving an Alka-Seltzer in water
i. silver tarnishing in air
13. Suppose I define a new temperature scale $\left(\right.$ Hokie, $\left.{ }^{\circ} \mathrm{H}\right)$ where the freezing point of $\mathrm{H}_{2} \mathrm{O}$ is $-40^{\circ} \mathrm{H}$ and the boiling point of $\mathrm{H}_{2} \mathrm{O}$ is $320^{\circ} \mathrm{H}$.

To what temperature in ${ }^{\circ} \mathrm{C}$ does $100^{\circ} \mathrm{H}$ correspond? From a significant figure standpoint, which scale the ${ }^{\circ} \mathrm{H}$ or the ${ }^{\circ} \mathrm{C}$ more precisely defines the temperature? Why?
14. Classify the following processes as endothermic or exothermic:
a. melting of ice
b. evaporation of alcohol
c. combustion of methane
d. frying an egg
e. carbohydrates metabolized by the body
15. When washing soda $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ is stirred into $\mathrm{H}_{2} \mathrm{O}$ initially at $25^{\circ} \mathrm{C}$ the temperature of the resulting solution is greater than $25^{\circ} \mathrm{C}$. Is the dissolution process exothermic or endothermic? Explain.

QUESTIONS ON DENSITY

16. A cube with edge $=1.00$ " of an unknown pure substance has a mass of 10.0 oz . What is the density of this substance in g / mL ? In kg / L ? (Remember: $1 \mathrm{~mL}=1 \mathrm{cc}$ exactly and $1.00 \mathrm{oz}=28.35 \mathrm{~g}$)
17. Osmium is the densest element known. What is the density of osmium if 2.72 g of osmium has a volume of 0.121 mL ?
18. What is the mass of 125 mL of chlorine gas if the density of chlorine gas is $3.16 \mathrm{~g} / \mathrm{L}$?
19. What is the volume of 11.3 g of graphite (carbon) which has a density of $2.25 \mathrm{~g} / \mathrm{cm}^{3}$?
20. Determine the density of a block of metal weighing 20.12 g which when immersed in water contained in a graduated cylinder causes the water level to rise from 15.5 mL to 21.6 mL .
21. A graduated cylinder has a mass of 57.832 g . An organic liquid, toluene, with a density of $0.866 \mathrm{~g} / \mathrm{cm}^{3}$ is added until the combined mass reads 87.127 g . What is the volume of the liquid in the graduated cylinder?

QUESTIONS ON FUNDAMENTAL LAWS OF CHEMISTRY

22. If 16.0 g of oxygen react completely with 2.0 g of hydrogen to produce water, what mass of water is produced? What natural law are you using to determine the mass of the water?

If 4.0 g of oxygen are reacted with 2.0 g of hydrogen to produce water and leftover hydrogen, what mass of hydrogen is leftover? What is the mass of water produced? On what natural laws are your responses based?
23. Consider these hypothetical examples of the work of John Dalton on the mythical elements Gazook (G) and Mudd (M) under differing experimental conditions:
a. $1.00 \mathrm{~g} \mathrm{G}+3.00 \mathrm{~g} \mathrm{M} \longrightarrow 4.00 \mathrm{~g}$ of a new pure stuff, Compound I
b. $1.00 \mathrm{~g} \mathrm{G}+6.00 \mathrm{~g} \mathrm{M} \longrightarrow 7.00 \mathrm{~g}$ of another pure stuff, Compound II
c. $1.00 \mathrm{~g} \mathrm{G}+9.00 \mathrm{~g} \mathrm{M} \longrightarrow 10.00 \mathrm{~g}$ of yet another pure stuff, Compound III
i) What natural law can be used to derive simplest formulas for the products from these data?
ii) Now, for a, b, and c respectively, what are the SIMPLEST formulas for the products that are consistent with the data?
iii) If GM_{2} is an acceptable formula for compound I , what are acceptable formulas for the other products?
iv) If $G_{2} M_{5}$ is an acceptable formula for compound I, what are acceptable formulas for the other products?
v) If GM is an acceptable formula for compound II, what are acceptable formulas for the other products?

QUESTIONS ON FUNDAMENTAL SUBATOMIC PARTICLE

24. J. J. Thomson showed that cathode ray tubes could be constructed using many different metals as the cathodic electrode material.

How do the results of the Thomson experiments support the theory that cathode rays (or electrons as they are known today) are fundamental particles of all matter?

What did his experiments show about canal rays?
25. Why could neutrons not be isolated and detected by the same methods that had been used to characterize electrons and protons?
26. A student repeats Millikan's oil drop experiment in order to determine the charge on the electron. The results were:

Droplet	Calculated charge
A	$-9.6132 \times 10^{-19} \mathrm{C}$
B	$-14.4198 \times 10^{-19} \mathrm{C}$
C	$-4.8066 \times 10^{-19} \mathrm{C}$
D	$-19.2264 \times 10^{-19} \mathrm{C}$

a. From these four pieces of data, what is the LARGEST acceptable value for the charge on the electron? Explain.
b. Now reconsider the data. Could the value of $-2.4033 \times 10^{-19} \mathrm{C}$ also be an acceptable value? Explain.
27. The charge/mass (e / m) ratio for an electron is $-1.76 \times 10^{8} \mathrm{C} / \mathrm{g}$ and this ratio for a proton is $+9.58 \times 10^{4} \mathrm{C} / \mathrm{g}$. Use these data to show why chemists may consider an electron to be essentially massless. (Hint. Calculate the ratio of the mass of an electron to the mass of a hydrogen atom.)
28. It is now known that static electric charges are caused by the transfer of electrons.
a. How many excess electrons are present on an object with a charge of $-5.5 \times 10^{-15} \mathrm{C}$?
b. How many electrons are deficient from an object with a net charge of $+6.4 \times 10^{-12} \mathrm{C}$?
29. What is the net charge, in coulombs, associated with 1.00×10^{12} :
a. hydrogen atoms $\left({ }_{1}^{1} \mathrm{H}\right)$?
b. fluoride ions $\left(\mathrm{F}^{-}\right)$?
c. ${ }_{10}^{22} \mathrm{Ne}^{+2}$ ions?
30. Why is it important to use a very thin foil for the Rutherford experiment?
31. Calculate the density of matter in a proton using Rutherford's estimate of the diameter of a proton of $1.5 \times 10^{-13} \mathrm{~cm}$. The mass of a free proton is about $1.67 \times 10^{-24} \mathrm{~g}$. Assume the nucleus is a sphere $\left(\mathrm{V}=4 / 3 \pi \mathrm{r}^{3}\right)$. Compare this density with the density of osmium metal (the densest element) which is $22 \mathrm{~g} / \mathrm{cm}^{3}$). Comment about the amount of "empty space" in an atom.
32. Consider that the gold foil used in the Rutherford experiment was $4 \times 10^{-4} \mathrm{~cm}$ thick. If Au has an atomic radius of $1.4 \AA$, on the average through how many Au atoms did each alpha particle (α) pass? (Refer to diagram at right.)

33. Complete the following table:

Elemental Symbol	Number of Protons	Number of Neutrons	Number of Electrons	Charge on Species	Name
${ }_{78}^{190} \mathrm{Pt}$					
${ }_{20}^{4} \mathrm{Ca}^{+2}$					
${ }_{2}^{23} \mathrm{Fr}$					
${ }_{87}^{139} \mathrm{~F}_{53}$					
${ }_{53}^{3} \mathrm{He}$					
		7	6		Carbon Thirteen
	14	15		0	
		18	18	-2	
	26	30	23		
		118	76	+3	

34. Although the symbol ${ }_{17}^{35} \mathrm{Cl}$ may be preferred to the simpler ${ }^{35} \mathrm{Cl}$, can you explain why the two actually convey the same information? Do the symbols ${ }_{17}^{35} \mathrm{Cl}$ and ${ }_{17} \mathrm{Cl}$ have the same meaning?
35. Are the two atoms described by ${ }^{60} \mathrm{X}$ and ${ }^{60} \mathrm{Y}$ atoms of the same element?
36. The mass numbers of the isotopes of hydrogen, called protium, deuterium, and tritium, are 1,2 , and 3 , respectively. What are the basic differences in these types of hydrogen atoms?
37. Explain why ${ }^{18} \mathrm{O}$ and ${ }^{16} \mathrm{O}$ have essentially identical chemical properties.
38. The mass of a ${ }_{6}^{12} \mathrm{C}$ atom is taken to be exactly 12 amu . Are there likely to be any other nuclides with an exact integral (whole number) mass, expressed in amu? Explain.
39. Determine the average atomic mass of the following elements given the natural isotopic distributions and absolute isotopic masses:
a. Potassium, only two natural isotopes:
${ }^{39} \mathrm{~K} ; 38.9637 \mathrm{amu}, 93.12 \%$ and ${ }^{41} \mathrm{~K} ; 40.974 \mathrm{amu}, 6.880 \%$
b. Neon, three natural isotopes:
${ }^{20} \mathrm{Ne}, 19.99244 \mathrm{amu}, 90.92 \%,{ }^{21} \mathrm{Ne}, 20.99395 \mathrm{amu}, 0.2570 \%$ and ${ }^{22} \mathrm{Ne}, 21.99138 \mathrm{amu}, 8.820 \%$
c. Do any potassium or neon atoms exist with your calculated masses?
40. The element silver consists in nature of two isotopes, ${ }^{107} \mathrm{Ag}$, with isotopic mass of 106.905 amu , and ${ }^{109} \mathrm{Ag}$, with isotopic mass of 108.905 amu . The accepted atomic mass of Ag is 107.870 amu . From this calculate the relative amounts of ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$ in nature.

QUESTIONS ON BONDING, IONS AND MOLECULES

41. What is the difference between an atom and a molecule?
42. What is the difference between an atom, a simple cation, and a simple anion?
43. What is the difference between a molecule and a polyatomic ion?
44. What is the difference between a covalent bond and an ionic bond?
45. Which of the following bonds are likely to be ionic and which covalent?
a) Na to Cl bond
b) C to H bond
c) B to Cl bond
d) O to Fe bond
46. Correct the following mis-statements.
a) The formula for carbon dioxide is CO 2 .
b) The molecule of $\mathrm{H}_{2} \mathrm{O}$ contains one atom of hydrogen and two atoms of oxygen.
c) The molecules of sodium chloride (table salt) have the formula of NaCl .
d) Mg^{+2} is an anion.
e) NH_{3} (ammonia) is a polyatomic ion.

QUESTIONS ON MOLES, FORMULAS AND PERCENT COMPOSITION

47. Determine the molar mass in grams (the mass of one mole) for each of the following species. Carry each calculation to the maximum number of significant figures allowed by the data.
a. Fe
b. $\mathrm{N}_{2} \mathrm{O}_{4}$
c. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsO}_{4}$
d. CO_{3}^{-2}
48. Calculate the formula mass (the mass of one formula unit) in amu and in grams for those materials in question 47. ($\left.1 \mathrm{amu}=1.66054 \times 10^{-24} \mathrm{~g}\right)$ Make sure that you know the difference between questions 47 and 48!
49. Carry out each of the conversions indicated via the unit - factor analysis approach.
a. $37.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to moles $\mathrm{H}_{2} \mathrm{O}$
b. 3.25×10^{-2} moles F^{-1} to $\mathrm{g} \mathrm{F}^{-1}$
c. $4.2 \mathrm{~g} \mathrm{I}_{2}$ to molecules I_{2}
d. $39.6 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to formula units $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
e. 4.5×10^{25} molecules $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ to grams $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
f. 0.25 moles CaCl_{2} to number of formula units CaCl_{2}
g. 6.26×10^{-3} moles Mg^{+2} to ions of Mg^{+2}
h. 4.5×10^{25} molecules S_{8} to moles S_{8}
50. Calculate the percentage by mass composition of each element in each of the following compounds.
a. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
b. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
51. a. Calculate the mass percent of water in $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
b. Calculate the mass of nitrogen in 30.0 g of the amino acid, glycine, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
52. a. A compound composed of xenon and fluorine, was found to be $63.3 \% \mathrm{Xe}$ and $36.7 \% \mathrm{~F}$ by mass. Calculate the empirical formula.
b. A new organic compound gave the following elemental analysis:
$60.59 \% \mathrm{C}$ and $7.12 \% \mathrm{H}$. Further analysis revealed oxygen to be the only other element present. Compute the empirical formula for this compound.
c. Titanium forms two compounds with oxygen. Given the elemental analysis for each compound, calculate the empirical formulas.

$$
\text { Cpd. I: } 59.9 \% \text { Ti, } 40.1 \% 0 \quad \text { Cpd. II: } 66.6 \% \mathrm{Ti}, 33.4 \% 0
$$

53. Given the following empirical formulas and molecular masses, calculate the molecular formulas:

Empirical Formula Molecular mass, amu($\pm 3 \%$)

CH_{2}	71
$\mathrm{CH}_{2} \mathrm{O}$	88
AlCl_{3}	267

54. Determine the empirical formula, molecular formula, and correct molecular mass for each compound listed below:
a. $\mathrm{C}, 85.69 \% ; \mathrm{H}, 14.31 \% ; \quad \mathrm{MM} \approx 56 \mathrm{amu}(\pm 2 \%$ error $)$
b. $\mathrm{C}, 38.7 \% ; \mathrm{H}, 9.7 \% ; \mathrm{O}, 51.6 \% ; \quad \mathrm{MM} \approx 60 \mathrm{amu} \pm 3 \mathrm{amu}$
c. $\mathrm{C}, 59.0 \% ; \mathrm{H}, 7.1 \% ; \mathrm{O}, 26.2 \% ; \mathrm{N}, 7.7 \% ; \quad \mathrm{MM} \approx 182 \mathrm{amu} \pm 4 \mathrm{amu}$
d. $\mathrm{C}, 49.5 \% ; \mathrm{H}, 5.15 \% ; \mathrm{N}, 28.9 \% ; \mathrm{O}, 16.5 \% ; \quad \mathrm{MM} \approx 195 \mathrm{amu} \pm 2 \mathrm{amu}$
e. $\mathrm{C}, 1.640 \mathrm{~g} ; \mathrm{H}, 0.1032 \mathrm{~g} ; \mathrm{N}, 0.4780 \mathrm{~g} ; \mathrm{O}, 1.365 \mathrm{~g} ; \quad \mathrm{MM} \approx 420 \pm 20 \mathrm{amu}$

QUESTIONS ON STOICHIOMETRY AND WRITING SIMPLE EQUATIONS

55. Balance the following chemical reactions by inspection.
a. $\mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})$
b. $\mathrm{Bi}^{+3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
c. $\mathrm{Al}(\mathrm{s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Al}^{+3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
d. $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
e. $\mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})$
f. $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{Cu}^{+2}(\mathrm{aq}) \longrightarrow \mathrm{CuCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
g. $\mathrm{P}_{4} \mathrm{O}_{10}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$
h. See handout on balancing for more and harder problems.
56. Write statements using the terms, atoms, ions, molecules, and/or formula units, as appropriate, to describe the information given to a chemist by equations (a), (b), and (c) in problem 55 above.
57. Produce the balanced chemical equation for each.
a. Sodium metal and chlorine gas react to form solid sodium chloride.
b. Carbon and oxygen gas react to yield carbon monoxide gas.
c. Carbon and oxygen gas react to yield carbon dioxide gas.
d. Potassium metal and liquid water react to form H_{2} gas and aqueous potassium and hydroxide ions.
e. Hydrogen and nitrogen gas react to form ammonia.
f. The liquids, dichlorine heptoxide, $\mathrm{Cl}_{2} \mathrm{O}_{7}$, and $\mathrm{H}_{2} \mathrm{O}$ combine to give aqueous $\mathrm{H}_{3} \mathrm{O}^{+}$and ClO_{4}^{-}ions.
g. Hydrogen gas reacts with $\mathrm{Fe}_{3} \mathrm{O}_{4}$ yielding iron metal and liquid water.
h. Iron (II) persulfide $\left(\mathrm{FeS}_{2}\right)$ and oxygen gas yield iron (III) oxide and sulfur dioxide gas.
58. Write equations for the following transformations:
a. Iron reacts with air to form $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (a form of rust).
b. Sulfur is burned in air to form gaseous sulfur dioxide.
c. A water solution of sodium chloride is evaporated to dryness.
d. Liquid ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ reacts with O_{2} gas to produce carbon dioxide gas and liquid water.
e. Water is electrolyzed to form its constituent elements.
f. A mixture of elemental hydrogen and oxygen is sparked to ignition.
59. Consider the following balanced equation: $4 \mathrm{P}_{4}+5 \mathrm{~S}_{8} \longrightarrow 4 \mathrm{P}_{4} \mathrm{~S}_{10}$
a. How many moles of $\mathrm{P}_{4} \mathrm{~S}_{10}$ are produced when 0.50 mole of S_{8} react?
b. How many moles of P_{4} are required to react with 16.0 g sulfur?
60. Consider the following balanced equation: $3 \mathrm{NaN}_{3} \longrightarrow \mathrm{Na}_{3} \mathrm{~N}+4 \mathrm{~N}_{2}$
a. How many moles of N_{2} are produced by the decomposition of 0.219 mol of NaN_{3} ?
b. How many moles of NaN_{3} are required to produce $25.0 \mathrm{~g} \mathrm{~N}_{2}$?
61. Consider this reaction: $2 \mathrm{Al}+6 \mathrm{HCl} \longrightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}+3 \mathrm{H}_{2}$
a. Calculate the mass of hydrogen formed when 25.0 g of the aluminum reacts with excess HCl .
b. What mass of Al would react with excess HCl to produce 1.00×10^{24} molecules of H_{2} gas?
62. Given that iron metal reacts with bromine to produce iron (III) bromide,
a. Write the balanced equation.
b. What mass of Br_{2} would be required to react completely with 210 g Fe ?
c. What mass of FeBr_{3} could be recovered from the reaction of 210 g Fe and excess Br_{2} ?
d. Calculate the percent yield of FeBr_{3} if 974 g of FeBr_{3} are produced in part c .
63. Into a sealed reaction flask were placed 1.00 g magnesium metal with 1.00 g of nitrogen gas. Heating drove the reaction to completion to yield only one product, magnesium nitride, $\mathrm{Mg}_{3} \mathrm{~N}_{2}$.

$$
3 \mathrm{Mg}+\mathrm{N}_{2} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}
$$

a. Identify the reactant present in excess.
b. What is the theoretical yield of magnesium nitride?
c. How many grams of the excess reagent remained after the reaction is completed?
64. Consider the following balanced equation:
$6 \mathrm{ClO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{HClO}_{3}+\mathrm{HCl}$
a. How many moles of HClO_{3} are produced from 14.3 g of ClO_{2} ?
b. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are needed to produce 5.74 g of HCl ?
c. How many grams of HClO_{3} are produced when 4.25 g of ClO_{2} are added to $0.853 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
65. Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, and hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, have been used as rocket propellents. They react according to the equation: $\quad 7 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{HNO}_{3}+8 \mathrm{H}_{2} \mathrm{O}$
a. How many moles of HNO_{3} are formed from $0.0250 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}$.
b. How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ react with $22.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}$.
c. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are formed if $1.87 \mathrm{~mol}_{\mathrm{HNO}}^{3}$ are produced?
d. How many grams of $\mathrm{H}_{2} \mathrm{O}_{2}$ are needed to produce $45.8 \mathrm{~g} \mathrm{HNO}_{3}$?
66. Compare the quantities of heat liberated per mole of iron formed when the oxides $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are reduced by aluminum.

$$
\begin{array}{rll}
3 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+8 \mathrm{Al}(\mathrm{~s}) & \Delta \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+9 \mathrm{Fe}(\mathrm{~s}) & \Delta \mathrm{H}^{\circ}=-3.348 \times 10^{3} \mathrm{~kJ} \\
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s} & \Delta \mathrm{H}^{\circ}=-8.515 \times 10^{2} \mathrm{~kJ}
\end{array}
$$

67. Calculate the amount of heat released when 10.0 g ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns in oxygen to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ and the products are cooled to $25.0^{\circ} \mathrm{C}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-1.367 \times 10^{3} \mathrm{~kJ}
$$

68. How much heat energy is released when 6.00 lb (about one gallon) of gasoline with a composition that corresponds to octane is completely burned and the products are cooled to $25.0^{\circ} \mathrm{C}$? Use the following equation and note that: $1 \mathrm{lb}=454 \mathrm{~g}$.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-1.10 \times 10^{4} \mathrm{~kJ}
$$

69. How much heat would be required in order to produce 562.0 g of mercury metal, Hg , from solid mercury(II) oxide, HgO .

$$
2 \mathrm{HgO} \longrightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \quad \Delta \mathrm{H}^{\circ}=+1.817 \times 10^{2} \mathrm{~kJ}
$$

QUESTIONS INVOLVING SOLUTIONS

70. In which physical state (solid, liquid, or gas) is it easiest to carry out chemical reactions? Explain.
71. What is the definition of the word "solution?"
72. What are the components of a solution? How are they distinguished?
73. Why are most chemical reactions carried out in liquid solution?
74. Generally, what is the most "convenient" concentration unit for chemists to use? Why?
75. What is the definition of "Molarity?"
76. What is the molarity of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, if 53.5 g of sugar are dissolved to give 746 mL of solution?
77. What is the molarity of KCl if 1.45 g of KCl are dissolved to give 50.0 mL of solution?
78. How many grams of NaNO_{3} are there in 75.0 mL of $1.00 \mathrm{M} \mathrm{NaNO}_{3}$ solution?

Periodic Table of the Elements

$\begin{gathered} 1 \\ \mathbf{H} \\ \hline 1.0079 \end{gathered}$	IIA											IIIA	IVA	VA	VIA	VIIA	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012182											10.81	12.011	14.0067	15.9994	18.998403	20.180
11	12											13	14	15	16	17	18
Na	$\mathbf{M g}$	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	AI	Si	P	S	CI	Ar
22.98977	24.305											26.98154	28.0855	30.97376	32.07	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0883	40.08	44.95591	47.867	50.9415	51.996	54.93805	55.845	58.93320	58.6934	63.546	65.39	69.723	72.61	74.92159	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.41	114.818	118.71	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	$\mathbf{R e}$	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9054	137.33	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.08	196.96654	200.59	204,3833	207.2	208.98037	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	$\mathbf{A c}^{\dagger}$	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(277)		(289)		(289)		(293)

*	$\begin{gathered} 58 \\ \mathrm{Ce} \\ \\ \hline 140.12 \end{gathered}$		60 Nd 144.24	$\begin{gathered} 61 \\ \mathbf{P m}_{(145)} \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ \text { 150.36 } \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	64 Gd 157.25	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158.92534 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \mathrm{Dy} \end{gathered}$	$\begin{gathered} 67 \\ \mathrm{Ho} \end{gathered}$ 164.93032	68 Er 167.26	$\begin{gathered} 69 \\ \text { Tm } \\ \text { T68.93421 } \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.967 \end{gathered}$
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
\dagger	Th	$\underset{231.03588}{\mathbf{P a}}$	$\underset{238.0289}{\mathbf{U}}$	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf ${ }^{(2251)}$	Es (252)	Fm (257)	Md (258)	No (259)	$\underset{(262)}{\mathbf{L r}}$

1995-98

