The Seven Crystal Systems

Cubic cell dimensions:

$$
\begin{aligned}
& a=b=c \\
& \alpha=\beta=\gamma=90^{\circ}
\end{aligned}
$$

(three mutually perpendicular axes of equal lengths)

This cell is a perfect cube.

Tetragonal cell dimensions:

$$
\begin{aligned}
& a=b \neq c \\
& \alpha=\beta=\gamma=90^{\circ}
\end{aligned}
$$

(three mutually perpendicular axes; two of equal lengths and one unequal)

This cell is like a saltine-cracker box.

Orthorhombic cell dimensions:

$$
\begin{aligned}
& a \neq b \neq c \\
& \alpha=\beta=\gamma=90^{\circ}
\end{aligned}
$$

(three mutually perpendicular axes; two of equal lengths and one unequal)

This cell is like a shoe box.

Rhombohedral cell dimensions:
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma \neq 90^{\circ}$
(two mutually non-perpendicular axes; third axes is perpendicular to one axis but not perpendicular to other; axes of equal lengths)

This cell is like a cube tilted twice.

Monoclinic cell dimensions:

$$
\begin{aligned}
& a \neq b \neq c \\
& \alpha=\gamma=90^{\circ} \quad \beta \neq 90^{\circ}
\end{aligned}
$$

(two mutually non-perpendicular axes; third axes is perpendicular to one axis but not perpendicular to other; axes of unequal lengths)

This cell is like a shoe box tilted once.

Triclinic cell dimensions:

$$
\begin{aligned}
& a \neq b \neq c \\
& \alpha \neq \beta \neq \gamma \neq 90^{\circ}
\end{aligned}
$$

(three mutually non-perpendicular axes of unequal lengths)

This cell is like a shoe box tilted twice.

Hexagonal cell dimensions:

3

$\mathrm{a}=\mathrm{b}=\mathrm{c} \neq \mathrm{d}$
$\alpha=\beta=\gamma=60^{\circ} ; \delta=90^{\circ}$
(three axes of equal length at 60° to each other; one axis of unequal length at 90° to the other three axes)

This cell is like a saltine-cracker box compressed at opposite corners.

Note: There are three unit cells shown. In each unit cell, there are parts of eight atoms at the corners of each unit cell. For the atoms at the 30° corners only $1 / 12$ of the atoms are in the cell while $1 / 6$ of each atom at the 60° angles are in the cell. Therefore there are a total of 2 atoms in each cell.

