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Abstract
In this work we introduce a method to expand series as

the sum of forward differences of the original summand.
We found that a series can be transformed into to a new
series partly consisting of the forward difference also known
as the discrete derivatives of the original summand of a se-
ries. This method can be used to calculate the sum of a
series over an arbitrary finite set of natural numbers. It can
be applied to various areas of calculus such as the calcula-
tion of Riemann sums, as well as possible applications as a
convergence and divergence test for infinite series.

Introduction
The inspiration for my research came from looking at the
relationship betweem terms of an integral. I realized, that
each term could be written as the first term plus a series of
the forward differences between terms up to the term that
we were writing. This allowed me to expand a series and
rewrite it into multiple new series. Since any term in a series
can be written as its first term and the differences between
the terms, I can use what is called a discrete derivative
also known as a forward difference to rewrite the series. A
forward difference is defined as

h 6= 0 ∆c+1
h f (z) = ∆c

hf (z + h)−∆c
hf (z)

h
.

Where h is the separation in domain values and c is a con-
stant. For my purposes I will let h = 1 because the domain
of a series consists of consecutive integers. But I will drop
h and just write ∆cf (z), because h won’t change through
out my research. The forward difference will allow me to
find the difference between consecutive terms in a series and
use these differences to derive a new series with a equiva-
lent sum. The original summand rewritten as a forward
difference will look like

f (z) = ∆0f (z).
For my work with a series we can only take the forward
difference n − 1 times where n is the number of terms of
the original series. Consider a series with only two terms,
there can only exist one difference between the terms and
this difference is obtained in the first forward difference.
For any other magnitude forward differences it would not
make sense since there would be no other differences to take
the difference between.

• Email: mark.s.lovett@my.sfcollege.edu
Programmed in LATEX

Results
In my research I observed that any series can be rewritten using the forward differences between its terms. I substituted in the
initial term plus a series of the forward differences for each of the original terms of the original series. After I simplified I found
that I was left with a new series that had an equivalent sum of the original series. I continued to do this process on the result
and discovered another series. I then observed a pattern that a series could be rewritten as many as n − 1 times using this
method. Below, I have given some examples of the different representations of the sum that I found. equation (1) represents the
first series I found after I substituted in the forward differences, equation (2) represents the second, and equation (3) represents
the third substitution. Equation (4) represents the result when n− 1 substitutions are made.
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p∑
z=q

f (z) = ∆0f (q)n + ∆1f (q)
[n−1]∑
k=1

k +
[n−2]∑
j=1

[(n−1)−j]∑
i=1

[(p−i)−j]∑
z=q

∆2f (z) (2)

p∑
z=q

f (z) = ∆0f (q)n + ∆1f (q)
[n−1]∑
k=1

k + ∆2f (q)
[n−2]∑
i=1

[(n−1)−i]∑
k=1

k +
[n−3]∑
m=1

[(n−2)−m]∑
j=1

[(n−1)−j−m]∑
i=1

[p−i−m−j]∑
z=q

∆3f (z) (3)

p∑
z=1

f (z) = ∆0f (q)n + ∆1f (q)
[n−1]∑
k=1

k + ∆2f (q)
[n−2]∑
i=1

[(n−1)−i]∑
k=1

k + ∆3f (q)
[n−3]∑
j=1

[(n−2)−j]∑
i=1

[(n−1)−i−j]∑
k=1

k + ... + ∆n−1f (q) (4)
After I found equation (4) I was then able to apply the summation formulas for an arithmetic series and the various sum of a
polynomial functions to each of the sums in equation (4). The result is equation (5) a simplified version of equation (4).
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Examples
When we apply equation (5) to ∑p

z=1 2z and ∑p
z=1

1
2

z, we
get the following equations respectively. For this example
k = q and n = p this is a special case, in other cases they
can vary.
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Below is a table comparing the terms of each series when
n = 5 as well as the sum for each of the series.

Table of terms when n = 5
k 2k 2

5
k

 1
2

k 1
2(−1

2 )k−15
k



1 2 10 1/2 2.5
2 4 20 1/4 -2.5
3 8 20 1/8 1.250
4 16 10 1/16 -.3125
5 32 2 1/32 .03125
Sum 62 62 0.96875 0.96875

Graph of the partial sums
If we graph the partial sums of the equations, then they
exactly fit the graphs of the partial sums of the original
series. Therefore if we use equation (5) to rewrite a series
the result shares the originals series convergence or diver-
gence. It is important to note that both series only differ
in the forward differences of their summand evaluated at
their lower bound.
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Conclusion
Altogether, I found that a series can be expanded into as
many as n−1 different series and that the last series can be
simplified into just the sum of the combinations of n and k
times the forward differences evaluated at the lower bound
of the original series. These series can be used to possi-
bly test the convergence or divergence in a series, because
the only difference between a convergent and divergent is
the forward differences evaluated at the lower bound of an
original series. The resulting series can also be used to cal-
culate the sum of any series with an arbitrary finite set of
natural numbers as its domain. It may even be possible to
use any of the resulting series to rewrite a Riemann sum
and possibly create a new way to integrate.
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